
DevOps for Devices
The innovator's guide to enterprise fleet transformation

API

Ya d h u G o p a l a n

First edition May 2022.

Cover art by Dinesha Kumar and Veeresh Antapur

Copyright © 2022 Yadhu Gopalan

All rights reserved. No part of this book may be reproduced or used in any manner without
the prior written permission of the copyright owner, except for the use of brief quotations in
a book review.

Bellevue
3600 136th Pl SE, #210,
Bellevue WA US, 98006

Bangalore
Salarpuria Adonis #3/1 Swami
Vivekananda Road, Old Madras
Road, 560038

1

Preface

The digital transformation moment for enterprise device fleets is now. With the rise of
technology, we’ve seen a massive market pull to incorporate intelligent devices into the
customer experience across verticals as far apart as healthcare, retail, education, and
travel. As enterprises have acknowledged the value and ROI of implementing these devices,
their proliferation has increased and the underlying complexities of managing them
effectively, particularly at scale, can no longer be ignored.

I want to give you a DevOps blueprint to deliver customer experience innovation and build
agility into the ways you deploy, manage, update, and secure your fleet of devices and the
software it runs. The insights are for anyone with an interest in DevOps and devices, but
senior decision makers who need to leverage devices to deliver exceptional customer
experiences will benefit most.

I’m obsessed with DevOps. It is the best framework we have today for building agile
engineering and operations teams. In over twenty years of leading teams at the intersection
of hardware and software, from Windows CE to Windows Phone, Amazon Fire OS, Amazon
Go, and the AWS Hardware Fleet team, I saw the impact of DevOps firsthand. It is the north
star that has allowed me to confidently push my code to hundreds of millions of devices
over the years.

For those of you who are already familiar with DevOps, devices and device fleets present
challenges cloud servers do not. A large cloud deployment might peak on the order of a
thousand servers, but device fleets can easily reach into the hundreds of thousands or even
millions. The largest restaurants or retailers have tens of thousands of stores globally, each
with potentially hundreds of devices. Consumer products like connected cars and fitness
equipment are produced in the millions. And to make things even more challenging,
compared to carefully maintained cloud servers in fixed and secure environments under
ideal conditions, fleets of devices are highly distributed and experience vastly different
environmental conditions. Customers and employees touch them, they may be exposed to
the elements, and they may not always be reachable.

2

The infrastructure and tooling needed to deploy, manage, update, and secure device fleets
mandates a completely different framework.

I built device infrastructure in bespoke environments several times, and I’ve become
passionate about democratizing that power. Microsoft and Amazon invested significant
resources building and maintaining that infrastructure — but as the cloud taught us, building
infrastructure is incredibly challenging. In fact, I’ve spoken with many CTOs and engineering
leaders who have visions of building their own proprietary device infrastructure, only to
realize the immense cost of developing and maintaining their own tooling. Not only was it
more resource-intensive than they thought, it distracted them from developing their product.

I founded Esper so that everyone can benefit from better infrastructure using our DevOps
for devices platform — and spend more time and energy focused on making customers
happy.

For 20 years I have been enabling devices one-off.
The time is right to democratize this

I hope you’ll come to share my conviction that DevOps is the single best solution to the
complexities of device fleets at enterprise scale—and that it can be your next big
competitive advantage.

3

Firmware shipped on CDs
Updates every 2-3 years

Over the Air updates
Updates every
6-12 months

DevOps for Devices
Updated weekly

DevOps for all devices
Updates anytime

1996 2003 2012 2013 2017 2018

2009
DevOps Coined

100’s of millions of devices run code I have personally built.

4

Table of Contents

Chapter 1: The Rise of DevOps

Chapter 2: DevOps for Devices Was Inevitable

Chapter 3: Bringing the Cloud Experience to Device Fleets

Chapter 4: CI/CD Pipelines: Paths to Continuous Innovation

Chapter 5: Observability: Learn from Real-World Performance

Chapter 6: DevSecOps: DevOps for Security and Compliance

Chapter 7: Managing Devices at Scale

DevOps for Devices Action Plan

1

2

3

4

5

6

7

5

In This Chapter:

• A quick refresher on DevOps fundamentals
• The proven benefits of DevOps for business apps
• Adding device management to your DevOps processes

What allows companies like Microsoft or Amazon to remain so consistently
innovative? As a veteran of both, I can share that innovation isn’t accidental or the
result of a unique company culture; it’s a result of deliberate focus on building the
right infrastructure to enable innovation.

A quick refresher on DevOps fundamentals

DevOps isn’t new, but many executives outside of engineering and ops might still be
getting up to speed. That’s okay! These are what I see as the core principles of
DevOps — as a foundation for understanding how these now proven practices are
beginning to transform dedicated device fleets at enterprise scale.

DevOps Principle #1: Continuous improvement

DevOps focuses on constant (daily) outputs and accomplishments. This cultural
shift can feel strange at first. Gone are six-month-long projects with massive
budgets and deliverables and, with it, the thinking that considers this the best
approach.

A culture of continuous testing, experimentation, and development supports agile
business practices at every level of the organization. DevOps can fuel smarter
investment decisions into product improvements and help technologists and
executives better understand real-time changes to customer preferences.

DevOps Principle #2: Automate everything (that can be automated)

A practical benefit of DevOps culture is that teams are always on the lookout for
ways to automate tasks and processes. Complementary AI and cloud services have
given companies and teams a huge opportunity to adopt software that automates
previously manual processes.

1 The Rise of DevOps

61. Ablett, J., & Wellwood, S. (15 C.E.). Optimizing Your DXP Capabilities [Review of Optimizing Your DXP Capabilities]. IBM and Adobe.
https://www.ibm.com/thought-leadership/institute-business-value/report/optimize-dxp

Managing systems at a manual level is surely tedious, but worse yet, it’s
error-prone. You want your engineers to be innovating, not babysitting
deployments. Additionally, human mistakes can be very demoralizing to the
individual responsible, as well as the team and wider organization. This is yet
another area where mechanisms can (and frequently, should) supplant intentions.

DevOps Principle #3: Customer needs are the North Star

Customer experience (CX) matters more than ever before. It’s one of the most
important factors in determining a company’s annual revenue growth and customer
loyalty. According to IBM and Adobe, in 2021, organizations that elevated CX digital
transformation to the status of a formal business priority reported three times
higher revenue growth for the prior two fiscal years.1

DevOps practices ensure every team member understands how their work impacts
the customer. It’s a powerful tool for maximizing customer retention and
satisfaction. Increased employee retention and overall satisfaction are often
welcome, and inevitable, side effects.

DevOps Principle #4: Scale up and scale down

Scripting, batching, and automating previously manual processes lets you scale
rapidly— up or down. In cloud computing, for example, we see this happening when
a company needs to add server capacity on the fly to address an unexpected spike
in traffic. Companies themselves often need to scale up (and, as the pandemic
demonstrated, scale down) quickly, though they tend to find doing so quite difficult.

DevOps builds into the DNA of a company a requirement that operations of any size
(from small teams to large departments) should be structured to grow or shrink
quickly. As dedicated devices increasingly become core to business strategy, you
need to be able to scale your device deployment workflows as easily and flexibly as
your cloud workflows.

1 - The Rise of DevOps

7

DevOps is an established practice, but device fleets have yet to fully benefit from
this revolution. Usage of dedicated devices to deliver customer experiences is
exploding. Esper partnered with 451 Research to survey developers and IT leaders
who manage dedicated devices at companies from 500 to well over 10,000
employees to look deeper into this trend. The results show 86% of respondents
agreed that dedicated device fleets, such as IoT devices that fulfill a single use
case, are increasingly viewed as a core element of overall business strategy.2
Furthermore, 89% of respondents agreed that dedicated devices are a critical tool
for differentiating services and customer experiences.3

The world we know today would not be possible without cloud computing
infrastructure — DevOps for devices will be similarly critical in enabling the next
generation of customer experiences.

DevOps for devices is the next wave of digital transformation, fueled by two
converging trends: the proven benefits of DevOps (Chapter 1) and the rising
importance of devices that bring digital agility to the physical world (Chapter 2).

(2022). Enterprise-Class Dedicated Device Fleets Set to Explode, but Operational Challenges Loom [Review of Enterprise-Class

Dedicated Device Fleets Set to Explode, but Operational Challenges Loom]. In https://blog.esper.io/digital-transformation-strategy-

around-dedicated-devices/. - Esper and 451 Research.

DevOps Principle #5: Plan to fail … and learn from those failures

Continuously delivering work product in smaller bites also means there are more
(smaller) missteps along the way. Companies should embrace failure by
de-stigmatizing mistakes and turning them into learning opportunities that
immediately provide blueprints for how to do things better or more efficiently going
forward.

While deploying quickly can be great, it’s critical to have excellent monitoring and
partitioning of your fleet in place as well. This enables the ability to stop
deployments and roll them back, which is crucial to deployment agility. When
failures occur you need to have an operational excellence process in place to learn
about each failure (e.g. through root cause analysis) and address them
immediately.

1 - The Rise of DevOps

8

DevOps Principle #6: Measure everything measurable

Organizations that measure everything can better understand the potential impact
of their choices. DevOps is an important step for integrating real-world data into
business decision-making. Data can help teams make better decisions about
changes to services, processes, and other variables across the organization.

The only real way to know you’re making the right choices is by measuring variables
and tracking their progression over time. And any variable that can be measured,
should be measured. You never know what data will become relevant in the future
(good storage is cheap, good data is not). If you’re already measuring it, you’ve got
a great baseline to start from.

As CEO at Esper, I try to lead our company with these six DevOps principles and
ingrain them in every team and every department. If you want to grow with
confidence and continuously improve, I believe this is a great foundation to start
with. As we’ll see in Chapter 2, these principles unlock the value of device fleets.

The proven benefits of DevOps for business apps

Amazon was among the first companies to show how impactful DevOps can be:
constantly delivering the most up-to-date, feature-packed, and secure version of
your software to customers is a game-changer. Combining sophisticated tooling,
infrastructure, and development practices, you can continuously iterate software
and automatically push changes to production (and in turn, to your customers). But
what kind of outcomes can this approach enable?

DevOps streamlines development and operations by addressing shortcomings in
the traditional software development life cycle. Today, every company is a software
company. By extension, any company can be a DevOps-first company.

1 - The Rise of DevOps

9

The legacy approach to software deployment treats developers and operations as
two distinct “islands” inside an organization. Developers build and test, while
operations deploy and monitor.

But this structure creates silos. Devs see themselves as separate from ops, and
vice versa.

The shortcomings of silos become apparent when issues arise. Developers want
the operations team to be more agile so code and fixes can be deployed faster and
more frequently. Operations, meanwhile, wants development to more rigorously
test and optimize that software before deployment and get feedback after
deployment. Both sides have valid concerns.

Deploy Manage

Build Test QA

Operations Island

!
Do Not Cross

!

We
Build!

We
Maintain!

Operations IslandYou
didn’t
launch

the code!

You
didn’t

submit it
on time

It’s their fault!

It’s their fault!

Developer Island

Developer Island

1 - The Rise of DevOps

10

DevOps is a framework to resolve this bilateral frustration through better
orchestration between teams. Silos give way to collaborative alignment enabled by
tools, processes, and productive partnerships.

DevOps breaks down the development and operations wall by organizing tasks into
smaller, more manageable processes. This reduces the impact of any potential
issue, shortening your integration, deployment, and feedback loops. This speeds up
your development and deployment cycles while simultaneously decreasing risk and
increasing control over those processes. "When you put together a lot of small
updates and optimizations, you can deliver better, more reliable customer
experiences faster." It’s a win-win-win.

DevOps success story

Imagine an enterprise IT department has just finished updating 3,000 mobile
devices operated by field technicians, only to discover a serious new bug in the core
customer-facing app. In the legacy pre-DevOps world, the company would instantly
go into panic mode because now they need to recall every device to update the
software. Tens or even hundreds of thousands of hours in lost utilization might
accrue as you scramble to deploy a fix.

DevOps is not a technology
It’s a mindset focused on high-velocity code changes and deployments

based on custome feedback and telemetry — in a continuous loop.

1 - The Rise of DevOps

11

A proper DevOps team would be able to drive wildly different outcomes in this
situation (using Esper, of course!). Continuous integration and continuous delivery
(CI/CD) pipelines automatically push updates to every device in the field. Instead of
an all-hands fire drill, they’ve likely remedied the issue before most of the field techs
clock in (or notice the issue), and updates are applied to each device in stages
defined by the customer’s specific deployment needs.

In case it wasn’t clear: Long iteration cycles hurt your customers. As Gene Kim, the
former CTO of Tripwire, put it, "When you have long iterations, your ability to
out-experiment your competition is tremendously compromised. In an age when
almost all the major initiatives are nearly 100 percent reliant on the technology
value stream, we're talking about the biggest business problems of any
organization.”4

A lot has been written about the many advantages of DevOps in cloud software
development. But much less has been said about how DevOps can revolutionize the
dedicated device ecosystem.

Waters, J. (n.d.). The evolution of DevOps: Gene Kim on getting to continuous delivery [Review of The evolution of

DevOps: Gene Kim on getting to continuous delivery]. TechBeacon.

https://techbeacon.com/app-dev-testing/evolution-devops-gene-kim-getting-continuous-delivery

1 - The Rise of DevOps

12

• DevOps transforms how enterprises manage dedicated device fleets
• Laying the groundwork for success with DevOps for devices
• You’re competing in the age of dedicated devices … are your tools?

During my time working on the Amazon Go store concept, DevOps was the beating
heart of everything we did, from new tools for managing code to novel practices in
how software is architected, engineered, and written. A lot of the hard work that
went into making Amazon Go go was bridging DevOps from the familiar realm of
software to include the new aspects of hardware and software interaction.

The experience taught me that you did not need to reinvent the wheel to tame
hardware complexities at scale. But you did need new thinking, new habits, and
most importantly, new infrastructure. That’s how Esper came to be.

In truth, this is inevitable! DevOps is transforming every corner of the software
development universe and enterprise-scale device ops is no exception.

Why now?

Why wasn’t DevOps for devices evangelized five or ten years ago alongside DevOps
for cloud development? Inevitability doesn’t explain why this is the moment for
DevOps for devices.

To answer, we need a quick history of the evolution of developing and deploying
software for dedicated devices. Early in my career, we’d write the code, put it on a
CD, and then ship those CDs to the hardware manufacturer. If we wanted to update
the code, we’d need to wait for the next hardware cycle, which could be a year or
more away.

Next came side-loading with USB sticks. We could put the updated OS or
application code on the USB stick, plug it into the device, and run the update.

In This Chapter:

2 DevOps for Devices Was Inevitable

13

With the rise of cloud computing and cloud connectivity in the mid-to-late 2000s, it
became possible to make updates over the air. Typically you had to pay for it, so
updates were still done infrequently. Around the same time, Apple, Microsoft, and
Google launched their respective app stores, which rapidly shifted the paradigm for
app updates for mobile phones. However, for dedicated devices, those app stores
did not provide the granular control that enterprises require. Through the 2010s,
Apple’s App Store and Google’s Google Play Store (and Managed Google Play for
enterprise) grew in maturity and have become pervasive across consumer,
commercial, and enterprise applications.

Back to today. We’ve seen the rise of cloud DevOps practices and cloud
connectivity for devices reach near-ubiquity. At the same time, customer
expectations have never been higher. From mobile apps and SaaS products that
have frequent updates to cars that get updates with new features even after they’re
driven off the lot, the bar for innovation is higher than ever. And it will continue to
rise as digital-native generations become the lion’s share of the population. To
continue to thrive, the time is now for enterprises to embrace DevOps for devices.

DevOps transforms how enterprises manage devices

The typical Esper customer manages a fleet of Android devices running custom
software for use cases like in-store interactive promotion or field team project
management. Esper provides the critical infrastructure that lets these companies
focus on creating innovative customer experiences.

Esper is the first company to bring the power of DevOps to device fleets, and I gladly
spend a lot of my time evangelizing this philosophy to enterprise executives.
Getting their devices “working” in the field is just a step on the path to true DevOps
maturity — a means to an end. Because we all know what business leaders truly
want to focus on is delivering delightful customer experiences. That’s why Esper
focuses specifically on the devices so many companies increasingly depend on to
interact with their customers: The impact is real, measurable, and (in the case of
software deployment) immediate.

DevOps for devices delivers three key business benefits that share a common root
theme: Confidence.

2 - DevOps for Devices Was Inevitable

14

You don’t even have to look to Esper to see customers who are already benefiting
from the DevOps for devices phenomenon. Tesla can update its cars over the air,
including changes for driver safety or optimizing the available range. Amazon Alexa
constantly receives new skills that make it easier and more convenient for
customers to intelligently manage and interact with their homes, cars, and offices.
Companies that are taking full advantage of this convergence are being rewarded
with highly visible marketplace dominance.

Reliability. Manual processes done at scale are error
prone and slow. DevOps lets you automate batches of
update rollouts and can alert and respond to exceptions in
real time. You do less and more gets done (and done
safely).

Repeatability. There is no “done” in device management.
Deployments and updates should always be advancing
your near and long-term goals and delivering maximum
business value.

Security. Connected devices are subjected to dynamic
environments and require ongoing monitoring and
management to ensure devices fleets are functioning
properly. DevOps can help your device fleet withstand
complex and adverse conditions.

DevOps gets you there with:

2 - DevOps for Devices Was Inevitable

69%
of respondents
manage expect
fleets with over
1,000 devices

In three
years

Today

49%
of respondents
manage fleets

with over
1,000 devices

15

Device performance is crucial to customer experience

Dedicated device fleets are growing rapidly and have been for some time. Devices
are already delivering customer interactions, transactions, and experiences — and
are a new source of recurring revenue. By 2023, Gartner estimates that there will be
43 billion connected devices in the world; three times as many as in 2018.5

Organizations are increasing the size & diversity of their
dedicated device fleets

2 - DevOps for Devices Was Inevitable

16

Behind this explosive growth are dynamics like Moore’s Law, hardware
commoditization, and innovative device form factors that can reach customers in
contexts previously found only in science fiction. These continued advances in
technology (and drastically lower costs) mean virtually anything can become a
connected device: bicycles, watches, kiosks, televisions, industrial machines,
point-of-sale systems, cars, inventory scanners — the list goes on as far as your
imagination can take it.

Dedicated devices open doors to new use cases available for any company big or
small to deliver innovative customer experiences and generate new revenue
streams. In fact, I believe planned obsolescence is a thing of the past. Instead, in
line with demands for environmental sustainability and other consumer
preferences, companies are moving to subscription models where the product
constantly improves even though the hardware remains the same.

And subscription-based services are exactly what modern consumers are asking
for. A 2021 Zuora study found nearly two-thirds of customers choose subscriptions
to feel “connected” to brands in the age of self-service.6 These subscriptions
provide continuous personalization that improves over time, building an ongoing
connection with a customer that extends far beyond an individual transaction.

In the age of subscription models and recurring revenue, devices are mission
critical to delivering those experiences. Esper partnered with 451 Research on
research to validate this assumption. 89% of companies we surveyed consider their
dedicated device fleets a critical tool for differentiating their services and customer
experiences.7 These devices deliver a continuous stream of value across use cases
and industries. For example, innovative hotels and entertainment venues are
introducing personalized experiences, exclusive access with subscriptions, and
member rewards. Smart fitness brands stand out through curated content and
gamifying progress over time. Retailers are offering immersive experiences and
personalized subscription programs that connect the brand from home to their
brick-and-mortar stores.

To stay competitive, enterprises need to innovate on their customer experience
quickly and often. The 451 Research survey revealed an awareness that delivering
exceptional customer experiences at speed and scale requires new thinking:

(2021, March 21). SUBSCRIPTION ECONOMY INDEX LEVEL REACHES 437 OVER NEARLY A DECADE AS CONSUMER BUYING PREFERENCES SHIFT FROM
OWNERSHIP TO USERSHIP [Review of SUBSCRIPTION ECONOMY INDEX LEVEL REACHES 437 OVER NEARLY A DECADE AS CONSUMER BUYING PREFERENCES
SHIFT FROM OWNERSHIP TO USERSHIP]. Zuora Financial. - https://www.zuora.com/press-release/subscription-economy- index-level-reaches-437-over-nearly-a-
decade-as-consumer-buying-preferences-shift-from-ownership-to-usership/

(2022). Enterprise-Class Dedicated Device Fleets Set to Explode, but Operational Challenges Loom [Review of Enterprise-Class Dedicated Device Fleets Set to
Explode, but Operational Challenges Loom]. In - https://blog.esper.io/digital-transformation-strategy-around-dedicated-devices/. - Esper and 451 Research.

2 - DevOps for Devices Was Inevitable

17

Brands are rethinking their approaches to deploying, updating, and monitoring
device fleets at the edge — placing DevOps at the center of their action plans.

Managing devices isn’t easy. Hardware is, well, hard. Later chapters focus on how
DevOps for devices reverses that dynamic in your favor.

You’re competing in the age of dedicated devices … but your tools aren’t

Esper was born from the realization that the “best” option for device fleet
management, Mobile Device Management (MDM) software, just doesn’t do the job
that organizations need it to do. MDM platforms were built to address the Bring
Your Own Device (BYOD) reality of smartphones and other mobile devices inside
many large companies. To maintain any semblance of security in an environment
where corporate data lived on employees’ personal devices, IT teams needed help.
As a result, MDM was born.

say they will use
DevOps to help improve

the user experience of apps
and services.8

55%
of respondents want a DevOps-based

solution to help speed up time to
market for new services and

improvements

57%

(2022). Enterprise-Class Dedicated Device Fleets Set to Explode, but Operational Challenges Loom [Review of Enterprise-Class Dedicated Device Fleets
Set to Explode, but Operational Challenges Loom]. In - https://blog.esper.io/digital-transformation-strategy-around-dedicated-devices/. Esper and 451 Research.

2 - DevOps for Devices Was Inevitable

18

Among enterprise organizations dedicated devices are
increasingly viewed as critical to

2 - DevOps for Devices Was Inevitable

19

But MDM tools were never intended as a solution for dedicated device fleets. The
MDM DNA is to protect the company from employee devices. "In the MDM
paradigm, the company is first and the device is second. When it comes to
dedicated devices, the devices are mission critical to the business strategy." The
device, in essence, is the company. Whether it is a self-service kiosk, digital
signage, a forklift, or an exercise bike, these are the primary methods of interaction
between customers and companies.

When customers (internal or external) rely on these dedicated devices to function
properly and securely, that’s what DevOps for devices is for. As a result, any tool
comparison between MDM and DevOps for devices is apples to oranges:

• Always-connected, mission critical systems like point of sale, kiosks, and digital
 signage can’t be effectively managed using BYOD tools. These tools cannot
 effectively deploy, control, or update dedicated devices individually, much less at
 enterprise scale.

• Just because a dedicated device looks like a smartphone or tablet doesn’t mean
 it can be managed like one. DevOps-based solutions with APIs, SDKs, and OS
 savvy are needed to deploy, monitor, and update real fleets at real scale.

These comparatively simplistic solutions aren’t up to the task of managing
mission-critical devices. If building exceptionally reliable and consistent
experiences to your customers matter, frequent updates matter. Continuous
improvement matters. Robust remote connectivity matters. Modern device
strategies hinge on truly rapid iteration to ensure you’re always delivering the best
possible customer experience.

Many dedicated device fleets struggle to meet even quarterly software release
cycles — DevOps can enable weekly, daily, or even hourly deployment cycles. The
competitive advantages of such a shift speak for themselves.

The rise of DevOps alongside the rise of dedicated devices sets up what I believe is
the next natural evolution of both: DevOps for dedicated devices. Why this should
matter to most companies is the focus of the next chapter.

2 - DevOps for Devices Was Inevitable

20

In This Chapter:

• Devices are mission critical in the age of subscription revenue and elevated
 customer expectations
• The technologies enabling DevOps for devices
• What success looks like

Devices are the crucial last mile in your continuous value delivery chain — if your
software can’t reach the devices your customers depend on, you may as well not be
delivering that software at all. That last mile can be grueling — or even impassable
— without the infrastructure and practices a DevOps for devices platform can
enable.

DevOps (mostly) works for your devices like it works for your cloud servers

Successful development and operations teams build on proven DevOps principles
to solve for resilience and speed in fleet deployments. Device fleets present a
unique set of challenges, even compared to the cloud services ecosystem where
DevOps was born.

DEVOPS FOR CLOUD
TECH STACK

DEVOPS FOR DEVICES
TECH STACKFOR…

Pipelines

CI/CD

Containers

Configuration Management

(CM)

Cloud enablement / APIs

3 Bringing the Cloud Experience to Device Fleets

21

Customers (whether internal company employees or the public) who use dedicated
devices are virtually always remote from product teams, and end-users are rarely
product experts. There are no built-in redundancies or failover hardware for
consumer devices, and any downtime can result in costly customer churn.

Enterprises need a single pane of glass view into their device fleet to manage health
at scale, as well as sufficient alerting and monitoring to detect and correct early
warning signs before customer devices fail. DevOps for devices is the approach
needed to accomplish this.

The DevOps lifecycle for devices must also adjust to the fact that hardware, OS,
firmware, configurations, application services, and auxiliary content can all impact
total device health and customer experience.

Cloud deployments, even large ones, are at the magnitude of maybe a thousand
servers. On the other hand, device fleets often reach magnitudes of hundreds of
thousands or even millions of devices. New challenges come up at this level of
scale, which I will cover in Chapter 7. To make things even more challenging, device
fleets are much more distributed than cloud servers, with vastly different
environmental conditions.

3 - Bringing the Cloud Experience to Device Fleets

22

Update with caution

Enterprises have historically approached firmware and software updates with an
abundance of caution. Operations teams spend months of sleepless nights testing
updates before going live, hoping the update does not wreak havoc on their fleet.
Updating production devices with a traditional MDM solution can yield
unpredictable and potentially irreversible harm, as most lack features to safely and
systematically roll out updates, let alone monitor and respond to issues in real time
during a deployment.

Early in my career, I was working with a fleet of devices that was densely
concentrated in a location where it was physically difficult to remove and retrofit.
Since this was prior to having a DevOps for devices infrastructure in place, the
system had no rollback or safety mechanism. One time we rolled out an update that
produced issues in the real world and had functionality that clashed with future
updates. Because we couldn’t easily roll back, the only option was to manually
replace and rework the devices which took many weeks for the development team
to resolve.

DevOps for Dedicated Devices Compared to Cloud

Procure and configure
cloud resources (compute,

network, storage)

Grouping concepts to
match business needs,
staging environments

“Codified”, automatic
configuration Drift

management (config drifts)

Automated, staged
rollouts of updates

(code, content, config)

Health monitoring, alerting
Resource monitoring

App monitoring

Touchless when possible (EFA,
Knox) Flexible onboarding
(preload, automated full

configuration)

Flexible device groups Set
group blueprint to control

config for entire group
(many as one)

Device Blueprints
Drift Detection / Management

Device Pipelines (default
and custom) for all updates

to device fleet including
Esper SW (agent and OS)

Real-time health monitoring
Rich telemetry over time

for trends Default and
custom dashboards

Procure devices, install
management solution,

configure

Grouping concepts to
match business needs,
staging environments

“Codified”, automatic
configuration Drift

management (config drifts)

Automated, staged rollouts
of updates (code, content,

config) including error handling
(devices offline, etc)

Health monitoring, alerting
Resource monitoring

App monitoring
Device HW monitoring (battery, wifi)

Cloud Device Esper Value

Resource
Management

Manage
Configuration

Deploy
Updates

Monitoring

Provisioning

3 - Bringing the Cloud Experience to Device Fleets

23

Having these experiences, I know the fear that deploying updates can create. On
the other hand, not updating or delaying updates frequently isn’t an option, either, as
doing so creates security risks as well as risks to customer experience and loyalty.

I also worked on a device fleet that faced hardware issues that could have easily
been worked around with a software fix. But since there wasn’t a built-in
mechanism to deploy updates to the hardware, the only way it could be resolved
was a full hardware recall. In this instance, having the capability to update would
have reduced device downtime and saved the team weeks of work.

DevOps for devices strikes the balance, recognizing the potential consequences of
updates, both positive and negative. Ultimately, it is necessary to give organizations
a reliable, repeatable, and secure way to roll out and roll back updates to customers
with predictable results. Yet research shows only 35% of companies release
applications in a DevOps manner.9 Teams need automated ways to safely deploy
updates and partition their fleets to tightly target and perform updates often
without disrupting the customer experience.

Automation is king

Chances are, you have more than a handful of applications that are updated
frequently to deliver new features and fixes to your customers. And chances are
even better you don’t want to perform this never-ending stream of updates
manually, across your entire fleet, every time. With a DevOps approach, you can
easily configure automated device fleet workflows that scale with you.

If you’re already in the DevOps world, the tools for managing and releasing content
(applications) on devices aren’t far off from the cloud-based tools you're already
using — think Jenkins, JFrog, or CircleCI. Acting as an automation server, these
tools compile your content and push it through to your repository, where it then
becomes available to test or deploy. DevOps for devices is about bringing this same
functionality to that critical fleet last mile. Simply put, DevOps for devices
seamlessly deploys software from your repository directly onto your devices.

The automated, integrated version of device management greatly increases the
efficiency of releasing, configuring, and deploying your content. The fewer hands
involved, the less chance for things to go wrong. The automation here is also highly
repeatable and, therefore, scaleable. Grow and diversify your fleet as much as you
like, and your device management will stay simple while still giving end-users the
innovative experiences they expect.

(2022). Enterprise-Class Dedicated Device Fleets Set to Explode, but Operational Challenges Loom [Review of Enterprise-Class Dedicated Device Fleets Set to
Explode, but Operational Challenges Loom]. In - https://blog.esper.io/digital-transformation-strategy-around-dedicated-devices/. - Esper and 451 Research.

3 - Bringing the Cloud Experience to Device Fleets

24

Automation in action: Moving from manual to scripted

Let’s say you don’t have those kinds of powerful automations in place. The most
basic method to update those devices is the manual way. Take Android, for
example: First, you upload the APK installation file for your content to a cloud web
console, where it will be hosted. With your app hosted in the console, you can then
push that content to your devices with a variety of methods, like Android’s handy
ADB CLI.

Sounds simple enough. But what happens when you try to scale this process? More
likely than not, you have a diverse device fleet made up of thousands, or even
hundreds of thousands, of devices that require different content and updates at
different times. Imagine updating each device manually in a one-off cadence for
each update. It’s a painful picture.

Conversely, DevOps is built on the principle of automation. And many organizations
consider infrastructure automation the lynchpin of their DevOps implementations.
If you integrate this workflow with the cloud tools you’re already using to build
software, the aforementioned manual drudgery is fully replaced by an automated
workflow — from build to deployment — that puts your software on your devices as
quickly as your business demands.

Here's how. (Note that this workflow uses pipelines, which I'll expand on in our next
chapter. For now, think of them simply as a set of automated processes used to
complete a specified task.) It all starts with your existing CI/CD app development
pipelines. Esper Pipelines APIs integrate with your existing CI/CD infrastructure,
delivering software update packages directly to your Esper endpoint. Then, a
second API call is placed to build a pipeline in Esper. Once this pipeline is built, it's
used to push your content to the devices you wish, such as a set of test devices
used to ensure proper behavior before pushing to your production devices. From
this point on, the integration is set, and it's simply a matter of how you want to test
and deploy your content. With Esper, you can deploy it to your devices in stages or
deploy it to any segment of devices — a single device, a defined group, a percentage
of devices, or your entire fleet.

Successful implementation comes down to ensuring the integrations between
pipelines are in harmony. Since this workflow relies on standard APIs, there are no
configuration options to sort through or edge cases to consider. As long as you're
using standard REST APIs to communicate with Esper’s pipelines, you can use your
cloud-based tool of choice. If you’re unfamiliar with REST APIs, REST is an
architectural style for API that uses HTTP requests to access and use data. They’re
format-agnostic and will standardize the formatting of data requests and the data
received, making them fast and flexible to use.

3 - Bringing the Cloud Experience to Device Fleets

25

Protect your updated fleet

Now that you’ve updated your devices, monitoring their health, security, and
performance is the next most important thing. Robust monitoring is essential for
fleet devices. Replacements can take weeks or even months to ship from brand
headquarters or the manufacturer (OEM) overseas. Troubleshooting over the
phone is costly and frequently ineffective. Too often, minor failures can lead to a
major product recall.

Dedicated device fleets are uniquely heterogeneous and are only becoming more
fragmented and specialized in response to consumer demand for personalized
experiences. A single fleet can contain countless subsets of hardware
configurations, content, and cloud services. These variations may reflect a
combination of subscriber preference, demographics, behavior, and countless
other variables.

Traditional approaches to fleet segmentation aren’t pragmatic for monitoring at
scale, especially not in a fleet that contains thousands, let alone millions of edge
devices. Device operations teams need a single pane of glass to monitor the entire
fleet and intelligent alerts to avoid excessive noise and uncover meaningful
patterns.

Monitoring an enterprise fleet of edge devices requires dynamic partitioning so
DevOps teams learn from common failures and isolate unique ones. And, perhaps
most importantly, it requires the telemetry and operational agility to restore total
device health before an isolated warning signal impacts the experience of one or
many customers.

Tip of the iceberg

This is a small window into the power of using a DevOps approach when managing
a modern device fleet. The automation capabilities we’ve discussed in this chapter
are built on pipelines, which help you build and define workflows like the one we just
outlined. Now, let's dive into the ins and outs of pipelines and how they help build
the foundation of DevOps success.

3 - Bringing the Cloud Experience to Device Fleets3 - Bringing the Cloud Experience to Device Fleets

In This Chapter:

• Overview of Continuous integration / Continuous delivery (CI/CD) and pipelines
 concepts in DevOps
• CI/CD in the business context
• CI/CD in the DevOps for devices (hardware) context
• Typical CI/CD use cases

Software release cycles are highly dependent on the specifics of your business.
Whether it’s rapidly changing customer expectations in your industry, logistical
challenges, or even security and compliance requirements, there are many factors
you need to consider when identifying how frequently you want to release updates.

DevOps isn’t a silver bullet — it’s not going to eliminate these challenges, but it can
heavily degrade their ability to negatively impact your business. By breaking the
software update process up into smaller chunks through CI/CD, you reduce risk.
Then, by automating how those updates are staged and deployed at scale via
pipelines, you can deploy software faster to more devices and make your
customers happier.

Continuous integration / Continuous delivery (CI/CD)

Since virtually all modern software is cloud-first, software development has moved
to smaller, more frequent releases via the process of continuous integration and
continuous delivery, or CI/CD. In the devices context, CI/CD is a key element of the
infrastructure that allows you to manage the business apps running on dedicated
devices.

CI/CD covers the steps in the modern software development and release process:

• Continuous integration (CI): Comprises four phases: Plan, Code, Build, Test. The
next phase, Release, is the transition from CI to CD.

Continuous delivery (CD): CD starts with Release and then comprises the next three
phases: Deploy, Operate, and Monitor.

26

4 CI/CD Pipelines: Paths to Continuous Innovation

What is it?

INTEGRATION

CI: Plan/Code/Build/Test

DevOps phases of software
operations

DELIVERY

CD: Release/
Deploy/Operate/Monitor

DevOps phases of software
operations

Dev teamWho owns it? IT/Ops team

Component

DevOps pipelines

In terms of team ownership, developers own the integration phases, and IT
operations own the delivery phases. The transition phase, Release, is supposed to
be collaborative. But in reality, it often becomes a wall. Developers toss their code
over the wall to the IT operations team, which is then expected to release that code
into production. DevOps is the paradigm shift that smashes this wall and aligns the
two sides.

27

4 - CI/CD Pipelines: Paths to Continuous Innovation

As the complexity of your software and device fleet grows, so too will your need for
complex tools to enable efficient and effective deployment of that software in the
field through each of the phases. When applied properly, CI/CD gives you the
confidence and control you need to continuously innovate — another CI!

The business case for CI/CD

How often you release updates is a result of multiple competing business,
technical, and logistical factors. The product team (including developers and
engineers) wants to release as fast as they have created meaningfully better
experiences for the customer. The operations team balances that with logistical
concerns (e.g., is the device currently in use?) and risk factors (e.g., will the update
affect 10 customers or 10 million customers? If issues arise, will this just slow the
customer experience or break it completely?). Higher risk leads to less frequent
updates, and fewer updates mean customers wait longer to receive new
experiences.

As your software deployment footprint grows, the complexity of those deployments
will grow in equal or greater measure. Without proper CI/CD, you could find yourself
with a lot of angry customers, stale products, and a fleet that’s constantly trying to
catch up to your missteps by rushing out the product before it’s ready.

Bringing CI/CD to device fleet management

Introducing the hardware component into your DevOps practice adds new wrinkles.
Since DevOps is a framework for delivering quality software experiences quickly,
DevOps practices — breaking things into smaller components, reducing risk, adding
confidence to deploy faster, monitoring, etc. — can certainly be applied to devices.

In the CI/CD framework, this involves another CD: continuous deployment. You
write the code, which is automatically integrated into the codebase, and then
automatically delivered to the testing or production environment. Continuous
deployment takes the process further by automatically releasing a
tested-and-proven update to your customers and devices in the field — whether all
of them or a chosen group.

For apps, DevOps gives you ways to manage versions and constantly roll out new
functionality. For devices, DevOps gives you ways to manage configurations at
scale, ensuring your devices are ready to run your apps, including all the benefits of
continuous building, testing, and deploying.

28

4 - CI/CD Pipelines: Paths to Continuous Innovation

DevOps pipelines

In DevOps, a pipeline is a catch-all term for the processes a particular company
links together to enable CI/CD. In practice, it’s made up of the automations and
tools your teams use to tackle the individual steps in software development and
hardware management.

Pipeline automation goes up over time as DevOps processes mature within a
company. As we’ve seen, tooling and teams together increase the number of
subprocesses (build, test, etc.) that can be automated. Early in the DevOps maturity
phase, pipelines will likely have points where developers or operations need to step
in and take manual action (e.g., promoting a deployment stage).

Pipelines give you flexibility that isn’t possible with traditional siloed development
and operations — you can adjust for variability across devices and simultaneously
enforce consistency when and where you need it. A couple examples could be
customer experience segmentation and regional version control. Pipelines built to
account for such complexity let you release faster through simultaneous testing
and deployment.

Device pipelines in action

We’ve worked with customers from across industries, all of which benefit from
DevOps pipelines. Whether a global restaurant chain, retail company, or medical
device, there’s been a defining commonality in how pipelines are applied — one that
gets the standard, general availability configuration, and one that is treated as a test
or beta group. This could be the devices in the innovation lab, a test market, or a
group of devices that need to be treated uniquely, perhaps because of local
regulations or other regionalization features. Regardless of the reason, whenever
they want to test new experiences, they’re able to get them out to the right group of
devices every time.

Without DevOps for devices and pipeline tooling, rolling out an update that
manages multiple versions is cumbersome and typically requires field operators to
get hands-on by manually updating devices. As a result, far fewer updates end up
deployed, and the pace of innovation is reduced.

With CI/CD pipelines and over the air (OTA) updates, you can point the pipeline with
the new version to the test group, deploy the update, and test it. After QA, testing,
and receiving positive customer feedback, you can then point the pipeline to run on
the production fleet, automating and staging a bulk rollout to your specifications.

29

4 - CI/CD Pipelines: Paths to Continuous Innovation

Pipelines break down silos

Pipelines also help you manage multiple teams pushing updates to the same
devices. When your teams are innovating and pushing updates frequently (which is
good!), you can sometimes end up with unintended issues. Fortunately, DevOps
practices can solve those, too.

I once worked on a project where we built, thoroughly tested, and rolled out a
custom update. Soon after the update went out, another team pushed their update,
which was also thoroughly tested on its own. But together, there were issues and
the resolution required working with individual devices one by one. A mature
DevOps culture and toolset doesn’t just break down silos between developers and
operations; it also breaks down silos between engineering pods or teams. With
pipelines that can be shared between teams, the consequences from subsequent
interactions can be identified and solved earlier in the development cycle.

Once your pipelines are running smoothly, the natural next step is improving your
ability to capture and respond to feedback. Known formally as observability, it’s the
subject of our next chapter.

30

4 - CI/CD Pipelines: Paths to Continuous Innovation

Observability builds on traditional performance monitoring to offer deeper context
into software issues. As rapid software release cycles become more
commonplace, observability gives fleet operators better ways to understand what’s
going on with the fleet.

Great companies that practice DevOps with observability through sophisticated
and automated measurement can detect and rectify any adverse changes in real
time. As a result, you can create systems where deployments can happen at any
time.

Many years ago, I worked in a product org where code from thousands of
developers flowed regularly through the system with no formal release cycles. The
final production systems were continuously measured for any abnormal changes in
the metrics. This includes not just technical metrics but business value such as
drops in usage and orders. When abnormal conditions were detected, all code
updates that were deemed to be in the range possibly affecting the abnormality
were pulled back. It was then up to developers to understand which one of the
changes impacted the system.

This system trades off flow of changes and efficiency versus having to make the
rare analysis in retrospect when things go wrong. Of course, this only works when
you have great processes in place throughout the development cycle.

If you want to improve how you use feedback, proactively rectify errors, and
continuously improve software, you need observability.

In This Chapter:

• How Observability enables continuous feedback
• Observability in the business context
• Differences with observability for devices (hardware)
• Use cases highlighting effective Observability

31

5 Observability: Learn from Real-World Performance

Observability concepts

Before we dive into the benefits of observability in the dedicated device lifecycle,
let’s quickly recap some key concepts.

Observability is a buzzy catch-all term that comes down to using the right data to
better understand how a system is performing. I think of it as “performance
monitoring” for the cloud age. Telemetry data powers these insights, making use of
different flavors of output data:

Logs show you what happened “behind the scenes” and should include a
timestamp to tell you when it happened (e.g., X loaded at Y time). Of course, events
happen all the time and most are not meaningful — capture, stream, and retention
strategy are important. Logs are the basic building blocks used in both metrics and
traces.

Metrics, as the name suggests, measure performance over time. Tracking metrics
is critical for knowing whether you’re making the right decisions and analyzing
improvement. Common metrics are usage, lead times, release frequency, and time
to recovery.

Traces represent data movement through an application. Traces are used to
investigate issues such as performance degradation and errors and become
immensely valuable as workflows increase in complexity.

Why Is observability important?

In order to effectively implement DevOps, you need to create a feedback loop.
Going back to the familiar DevOps infinity loop, you see that the “monitor” phase
feeds back into the “plan” phase. Observability lives at this transition, providing
insight into how software is performing in the real world.

32

5 - Observability: Learn from Real-World Performance

(2021). Honeycomb’s Forrester Total Economic Impact (TEI) Study [Review of Honeycomb’s Forrester Total Economic

Impact (TEI) Study]. In Honeycomb.io. Honeycomb. - https://www.honeycomb.io/blog/forrester-tei-benefits-observability-roi-2021/
33

Here’s a practical example: An IT operations team identifies signs of performance
degradation. Customers are abandoning transactions late in the typical flow. The
team’s observability tools analyze traces and logs to identify the root causes. They
move quickly from realizing there’s a problem to working on fixing it.

Properly implemented DevOps observability really moves the needle, making it
easier to:

 • Identify errors and catch drift early, limiting the potential for downtime or lost
 revenue.
• Improve your release cadence because you can quickly identify and resolve
 issues that might otherwise stop a deployment in its tracks.
• Achieve better visibility into production environments lets you deliver software
 improvements with more confidence more quickly.

An emphasis on observability pays off — a Forrester study found one observability
tool generated an ROI of 296% and a net present value of $4.43 million over three
years.10

5 - Observability: Learn from Real-World Performance

Done right, observability can ultimately be a foundation for predicting issues and
improving reliability. For example, device telemetry data can be hooked up to
predictive analysis platforms to give you powerful insights about fleet performance
or even individual devices.

Observability for device fleets: Managing by exception

Telemetry is always important for cloud products, but it is especially important
when it comes to dedicated device fleets. With more devices in the field than any
one human being could hope to personally monitor, it’s both critical and challenging
to understand the state of your fleet while maintaining powerful visibility into
individual devices. You need tooling and automation to achieve this at scale. And
conceptually, you need to take a management by exception approach.

Fleet hardware and software composition introduce more wrinkles. If your fleet is
small and uniformly configured, you may try observing manually — knowing the
state of every device at all times. However, it only takes one outage or failed
deployment to learn that the manual approach is more than a little onerous (and
expensive). And as the permutations of the configurations multiply, it can quickly
become impossible to effectively monitor with manual processes. Enter
observability tooling designed for dedicated device fleets.

Rather than trying to keep track of the state of every device (which you do want to
have access to), managing by exception means you only want to be alerted to take
action when a device deviates from its expected state. This is the concept of drift.
Every device has a stated ideal configuration. This could be the application version,
admin settings, online or offline state, geolocation, etc. If the device’s actual state,
for whatever reason, does not match the ideal configuration, it has drifted and you
want to be notified.

Telemetry data and device fleet observability enable you to more efficiently and
effectively manage your device fleet. It allows you to quickly become aware of drift,
investigate, identify, and remedy — ideally before the end user even notices.

34

5 - Observability: Learn from Real-World Performance

For example, if an update results in an error in one device but not the other 1,000
devices in the fleet, how do you go about making a diagnosis? Was connectivity
disrupted at the time of the update? Was the device powered off? Is the error only
occurring on devices running a specific version of the OS? Does the presence of a
peripheral change introduce a previously undocumented incompatibility? All of
these questions can be answered using robust telemetry data in concert with
observability tooling.

Observability in action: Remote healthcare

Esper worked with a company building a connected product for remote healthcare.
It goes without saying that reliability was priority one for this customer. Whenever
the user needs the device, it simply must work. This is a very valid reason to be
concerned by the prospect of pushing frequent updates. If an update takes the
device temporarily offline (or worse), the consequences may be severe — even
life-threatening. Without proper observability practices, your end users may notice
the error before you do, resulting in support tickets and many hours of headaches.
This can create a culture of organizational fear, in which updates take weeks or
months in testing to play out every potential scenario.

With DevOps observability in place, as this company achieved using Esper, the
provider can proactively identify and prevent issues before they become real
problems. Releasing updates stops being about avoiding disaster and starts being
about delighting the end customer.

Observability in action: Restaurant PoS system

National fast-food restaurant chains operate some of the largest and most
distributed point of sale (PoS) fleets in the world, meaning something as simple as
deploying an update to their PoS to add seasonal menu items could theoretically
bring down the entire business’s ability to take orders or process customer
payments. The highly distributed nature of those fleets also creates immense
challenges: How can you be sure every restaurant is always online, let alone that its
software is behaving?. For example, restaurant franchisees in one market might
turn off certain stations for weeks at a time to save on electricity during the
off-season. Now that they’re back online, they fail. This inhibits employees from
jumping on more stations to respond to swells in foot traffic.

35

5 - Observability: Learn from Real-World Performance

With observability, fleet managers can respond to this situation quickly or
proactively prevent it from occurring.To restore the devices, using observability
fleet managers could spot the non-functional systems and see these devices never
received the OS update the new patch relies on. They can then quickly deploy the
required OS updates to these select systems and then deploy the software patch.

To prevent this situation from occurring again, or at all, fleet managers can use
observability to see that these systems have been off for an out-of-policy amount
of time and set up an automatic alert to franchise or district managers to power
them on.

Observability in action: Warehousing and logistics

Observability can have a huge impact in many different use cases. Let’s say a
manufacturing company oversees a fleet of mounted forklift tablets that assist
workers on the floor. The on-device fulfillment software includes a spreadsheet that
forklift operators rely on to find and store their inventory. However, on a select
number of tablets, the data is taking far too long to load — the fields are completely
blank for 10 seconds before finally populating. This is hurting productivity and
causing workers to avoid using these forklifts. With the right observability in place,
operators can see that the devices with high latency are set to use a default cloud
database storage location instead of a geographically optimized one. They then
deploy a simple patch that instantly resolves the latency issues before employees
start sending in support tickets.

The presence of hardware adds a complicating layer (layers, even) when compared
to just observability in the cloud. As devices increasingly become mission critical to
business strategy as well as the wellbeing of everyday consumers, it’s important for
leaders to understand the value of observability and for their organizations to get it
right.

36

5 - Observability: Learn from Real-World Performance

In This Chapter:

• DevOps + Security = DevSecOps
• Common questions about DevSecOps
• Rapid security reviews even in regulated industries

While great for delivering rich customer experiences, device fleets are also a prime
target for bad actors. There are more hostile actors than ever, more media scrutiny
of breaches, and more people inside your company working hard to keep threats at
bay. The most successful security teams approach security in ways that are
appropriately flexible and adaptive: continuous improvements, rapid deployments,
and intelligent automation strategies.

After transforming how software is developed, DevOps is now transforming how
enterprises manage cybersecurity. This emerging area is called DevSecOps, and it’s
the best approach out there for securing cloud applications and the devices that
host them.

DevOps expands to integrate security

As DevOps organizations mature, it’s a natural step to integrate security and
compliance practices, knocking down the walls between security compliance and
development teams. This dynamic is most visible in regulated industries like
finance or healthcare, where applications must be approved by a security
compliance team that applies rules from a regulatory document. That team passes
the app back to the developers to implement needed changes, who then send the
latest app version back to security compliance. This back-and-forth exchange
continues until the security compliance team is satisfied.

In DevSecOps, security review processes are built into application planning and
development processes. The security team communicates with the devs in real
time, improving knowledge sharing and integrating once separate goals and
processes.

If you’re getting started with DevSecOps, start by looking at how you will bring
security into application development. It is fundamentally a process engineering,
communication, and culture shift project.

37

6 DevSecOps: DevOps for Security and Compliance

DevSecOps flows seamlessly from DevOps processes

A common fear is that DevSecOps will undo all the work that went into the process
improvements that make up your well-oiled DevOps machine. Good news: You can
get started with DevSecOps at any time, and with no disruption to your DevOps
processes that are already working.

That doesn’t mean DevSecOps comes for free. It does require updated processes,
training, and new automation tooling. Those costs should always be compared to
the value created by improved risk management. When security is embedded into
app development (and not approached as a late-stage add on), you get better
security and lower incidence rates (and the expense) of security breaches.

DevSecOps is even more impactful in regulated industries

Regulated industries are a great test case for DevSecOps. That’s because the
status quo (overwhelming amounts of compliance requirements) is dreadfully slow
and expensive. One of the largest global banks has 200 pages of rules, written out
in plain English, that are painstakingly applied to every app version before release.
That compliance “step” can take months of back and forth to complete.

The DevSecOps approach to this use case starts with translating rules into code
and ensuring developers know when to use that compliant code and security logic
in their microservices. Compliance becomes foundational — not a slow,
after-the-fact review process. And when your developers are thinking about security
during development, that reduces your compliance burden down the line. Your
overworked security and compliance teams will thank you.

DevSecOps in action

I once spoke to a product leader at a company in the financial tech industry who
had to go through six months of compliance testing after code complete for a
product launch. As you can imagine, waiting six months after code complete before
you launch your product is both bad for team morale as well as for customer
innovation. All because compliance and security were not integrated with the other
stages of the development process.

If you integrate compliance testing into every step — by practicing DevSecOps — the
result is zero months of compliance testing at the end of the development process

38

6 - DevSecOps: DevOps for Security and Compliance

Device fleets add a new layer of vulnerability. To combat that, today’s organizations
need to ingrain security into the entire development process rather than tack it on
at the end like an afterthought.

The benefits of DevSecOps are, in many ways, nearly identical to those of DevOps:
Teams move faster, communicate more, and code reaches deployment sooner
(and more frequently). Rather than looking at compliance and security as
roadblocks, DevSecOps views them as pipelines to be widened — with proven
processes and modern tooling. Implementing practices of continuous
improvement, rapid deployment, and automation put you in a strong position to
adapt those very same practices for security.

39

6 - DevSecOps: DevOps for Security and Compliance

(2017). Automation in the Workplace 2017 [Review of Automation in the Workplace 2017]. Smartsheet.

https://www.smartsheet.com/sites/default/files/smartsheet-automation-workplace.pdf

In This Chapter:

• The challenges you’ll face scaling DevOps for devices
• Tools for scaling DevOps for devices
• A DevOps for devices maturity scale

In this chapter, I will explain four key principles to help you overcome challenges as
your fleet grows in size and complexity. I learned various aspects of each of these
the hard way as we brought DevOps principles to our device teams at Microsoft and
Amazon. My team at Esper and I have helped many customers avoid these pitfalls,
and I hope to help you as well.

1: Manual processes fail at scale

So much of DevOps revolves around speeding up processes with systems and
tools to automate away rotework, allowing developers and operations teams alike
to focus on their core business functions. When it comes to manual processes, the
question of failure is not if, but when. According to Smartsheet’s Automation in the
Workplace report, where they surveyed 1,000 information workers, the top two
problems that automation can solve are reducing wasted time on repetitive work
and eliminating human error.11

When it comes to device configuration, deployment, monitoring, and updating,
many of the tasks are rotework: applying the same changes to all or many devices,
following the same set of steps each time. One company that I worked with had a
near-100 page instruction manual that needed to be followed for every new device
deployed. That’s a lot of potential for human error, and as a result, it needs to be
followed incredibly carefully, which takes time. I’m sure you agree that the time and
resources following those 100 pages could be better spent on higher value tasks.
With a DevOps approach to device provisioning, we were able to automate many of
the steps and reduce them by as much as 80%.

40

7 Managing Devices at Scale

Manual-to-scripted in action:

Andi’s Coffee Shops have self-serve kiosks in the drive-thru. To make sure the
kiosks get all the necessary updates and perform optimally, they need to be wiped,
rebooted, and re-provisioned regularly. In the manual world, before they open every
morning, an employee manually reboots the kiosk. If Andi’s only ran a few coffee
shops with a few kiosks, it would be easy to ensure this manual task is done daily.
But Andi’s has hundreds of coffee shops with hundreds of kiosks and relies on
many more people to complete this manual task. Instead, with DevOps, Andi’s can
write a script to perform the wipe, reboot, and re-provision operation and set it to
run across the entire fleet at 5:00 am every morning in the local time of each
location. They can even take one more step and automate the reboot operation to
only perform the reboot when a new version is available or an event is triggered.

This is a simple example, but you can see how scripting reduces the chances of
human error, reduces the chance that the kiosk is running an old version or is offline
for the day, and ultimately improves the customer experience.

2: Managing by exception

In Chapter 5, Observability, I discussed one major challenge of scaling your device
fleet: as your fleet grows, it becomes impractical and often impossible to monitor
the state of every device. For fleets of hundreds or thousands of devices or more,
you need observability tooling in place to help you monitor and manage by
exception. The point of this is that rather than looking at every individual device, you
only look at the ones creating problems.

When it comes to devices, you need to know when a device has drifted away from
its desired configuration. Unlike cloud servers, which are largely fungible, there are
many unique reasons why devices drift. To name a few, people (e.g., employees,
customers) are constantly touching them, and they can be in different
environments with sometimes harsh conditions such as industrial kitchens or
outside in freezing temperatures.

Breaking down the concept of drift even more, there are two types of drift:
accidental drift and managed drift. It is critical to know which bucket your drift falls
under.

41

7 - Managing Devices at Scale

Accidental drift can happen for multiple reasons, but most often is due to manual
error. Perhaps someone accidentally unplugged a device, and it was offline when it
was supposed to receive an update. Or it could be as simple as an employee
accidentally taking the device home with them instead of leaving it at the store. At
scale, with inevitable accidental drift, you need anomaly detection and alerting to let
your team know in a timely manner. And with remote monitoring or by reviewing
logs, you can identify the issue and resolve it.

Managed drift is when you intentionally set a device to deviate from the norm. This
is often the case in test labs, demo devices, or in early stages of staged rollouts.
These intentionally different devices are sometimes called snowflake devices
because they have unique configurations. It’s important to be able to distinguish
between devices that have managed drift and those that have accidental drift
because you don’t want to set off unnecessary alarms. You also want to be able to
track and monitor those devices specifically because eventually you’ll want an
automated way to return them back to the standard configuration after a specific
event or elapsed time.

Alerts in action:

Andi’s Coffee Shops likes to stay at the cutting edge of in-store customer
experiences. So, in addition to their hundreds of stores, they also have a private test
lab, where they can test their dev team’s latest and greatest app updates before
they are rolled out widely. This morning, all of the point of sale (POS) devices are
supposed to be updated to and running version 8.2 of their POS app. With robust
monitoring and anomaly detection in place Andi’s fleet manager gets a text
message alert at 5:10 am that one device is still running version 8.1. Looking at the
telemetry data, she can see that the device is offline and also uses ethernet for
power. Easy to solve.

Now monitoring all the devices, she also sees that two devices are running version
8.3. However, she can see that they are in the test lab device group. The drift was
planned, and therefore no alert was sent.

42

7 - Managing Devices at Scale

3: Organize your devices rigorously

Since managing device fleets gets more difficult as the device count grows, it’s
helpful if you can think of multiple devices as one. Enter the concept of groups.

Rather than hosting thousands of devices in a single inventory, creating groups
simplifies fleet management through a smaller collection of device configurations
and content.

How you group devices is dependent on your unique business, logistical, and
technical needs. Common ways to group devices are by location, device type or
functionality, or common configuration. You will also likely want to create
sub-group hierarchies (e.g., a device type group within a location group) for more
granular control of devices within a group.

Not only do grouping and staged rollouts make it easier to manage large fleets of
devices, but it also makes it possible to reduce the risk of any update. Groups are a
way to finely control the consequences of a single action, both positively and
negatively. For example, a restaurant chain may want to group every other POS
terminal in a store together so that when they roll out an update they can roll it out
to half of the terminals per pipeline stage. If the update fails and temporarily takes
those devices offline, the other half will still work. Fortunately, because you can also
automate the successive rollout to stages with larger groups based on desired
outcomes, you can scale the positive consequences without scaling the negative.

Groups in action: Andi’s Coffee Shops operates 1,000 devices across all of its
locations. However, there are not 1,000 unique configurations with unique
functionality. In the diagram below, we can see how a device hierarchy consisting of
five levels can enable Andi’s Coffee Shops to more easily manage their fleet.

Andi’s is testing a new menu item and wants to first roll it out to their test store,
Store 102 in San Francisco. To do so, they simply direct a pipeline run to update the
devices in that subgroup in Subgroup Level 3. When the new menu item proves
popular, they can direct that same pipeline to update all the stores in California in
Subgroup Level 1 and so on. No matter the grouping level, this makes deploying an
update to a group of devices as easy as deploying an update to a single device.

43

7 - Managing Devices at Scale

4: Plan to scale before you think you have to

When you have 10 devices, you can pretty much do everything manually. Even if it
takes 10, 15, or 20 minutes per device, you can feasibly do it. You can touch every
device, plug a USB stick in, and make an update. It would even be possible to send
someone out in the field if that’s where the 10 devices are.

But as you get to 100, 200, 1,000 devices, and more, all of that becomes
prohibitively expensive. To do some quick math, 10 minutes per device for 10
devices is 100 minutes. But 10 minutes per device for a fleet of 1,000 devices is
10,000 minutes. That’s a month of work! If you don’t put a plan in place early, you’ll
eat up time and resources before you know it. Invest in the infrastructure early, and
you’ll thank yourself later.

Planning to scale in action:

Provisioning (or enrolling, staging and kitting, etc.) a device is the process of
installing device management software onto the device with the desired device
configuration. On Android, for example, there are many provision methods such as
6-Tap and Android for Work that may take 10-15 minutes of hands-on device time
per device. Depending on the complexity of the configuration recipe, it can take
magnitudes longer.

Directory Level

Parent Group

Subgroup Level 1

Subgroup Level 2

Subgroup Level 3

Subgroup Level 4

Andi’s Coffe Shops

Test Lab California Washington Oregon

San Jose San Francisco San Diego

Self-service Kiosk Line-busting Tablet POS

Store 102 Store 207

...

44

7 - Managing Devices at Scale

For the first five locations, Andi’s Coffee Shops outsourced device provisioning to a
staging and kitting firm, which used the Android for Work method to provision new
devices to the required configuration. As Andi’s Coffee Shops expanded from five
stores to 100 stores, where they’d eventually have thousands of devices, the cost of
outsourcing the staging and kitting was going to quickly add up.

Thinking about scale early, Andi’s implemented a solution to mitigate this future
expense. They chose to go the Android Open Source Project (AOSP) route and, with
Esper, built their own flavor of the Android OS for their devices with Esper
Foundation for Android. This enables Seamless Provisioning, the ability to work
with the device manufacturer to flash the Esper Agent onto the device. Andi’s can
then ship that device straight from the manufacturer to the new store locations, and
once the device boots, the Esper Agent loads and automatically provisions the
device. No manual tasks, no staging and kitting.

When it comes to devices, thinking about scale becomes really important much
earlier than you think. Not only do you need to change your approach to monitoring,
but you want to automate as much as possible because manual tasks inevitably fail
at scale. You also want to organize and group devices so that you can reduce
(conceptually and process-wise) the number of devices you need to manage. And
finally, you want to think strategically about how you will manage at scale and put a
plan and infrastructure in place before it’s too late.

Growing in DevOps for devices maturity

Just as I advise all customers, you do not need to jump from 0 to 100 all at once. In
fact, significant shifts such as this need to be an evolution, bringing along people,
processes, and tools together.

Fortunately, as your device fleet grows in volume and complexity, you will actually
be forced to evolve and mature. When you start to grow beyond what you can
handle manually, the challenges I shared earlier are very painful. I hope you take my
advice and learn from my experience so you don’t feel that pain. Conversely,
because the pain is significant, the business value you realize by automating tasks,
organizing your fleet, and putting in the infrastructure will also be significant.

To that end, I suggest using the following maturity curve to help guide your
evolution. No matter where you self-identify on the curve, you can use it as a tool
to see how to get to the next phase until you reach your North Star, which is, in my
opinion, an Intelligent DevOps organization.

45

7 - Managing Devices at Scale

Additionally, you may find the following traits helpful in identifying and driving
self-awareness in your maturity stage. Manual is often correlated with Early Stage
DevOps, Orchestrated is often correlated with Team Scale DevOps, and Intelligent
is often correlated with Enterprise Scale DevOps.

Bu
si

ne
ss

 V
al

ue

DevOps for Devices Maturity

Manual

- Manual rollback
- Frequent outges
- Monthes to deploy

- Manual but
 repeatble rollback
- Some outges
- Weeks to deploy

- Semi-automated rollback
- Few outage
- Days to deploy

- Automated rollback
- Very few outages
- Hours to deploy

- Automated, at-scale rollback
- Rare outages
- Minutes to deploy

Scripted Orchestrated Continuous Intelligent

• Primarily UI or console-driven

• Siloed delivery teams

• Manual build, testing, and
 deployment

• Small number of off-the-shelf
 devices

• Basic management and basic
 monitoring

• APIs, scripts, and integration-driven

• Scaled DevOps teams

• Intelligent automation and canary
 (staged) deployments

• Very large number of custom
 devices (or mixed off-the-shelf
 and custom fleet)

• Advanced telemetry and
 anomaly detection

• UI/Console and script-driven

• DevOps teams

• Automated and scaled operations
 through CI/CD

• Larger number of off-the-shelf
 devices

• Advanced monitoring

Early Stage: Team Scale: Enterprise Scale:

46

7 - Managing Devices at Scale

The North Star

The Intelligent stage is the last stage of the DevOps for Devices maturity model.
When you are here, DevOps principles are embraced across the enterprise. You
reduce incidents to very rare occurrences and can very quickly (in minutes) push
fixes and updates to your systems. You can manage hundreds of thousands of
devices seamlessly, you implement automated canary (staged) deployment
methods, and you have advanced monitoring, forecasting, and anomaly detection
processes. From app to hardware in the field, your infrastructure systems allow for
frictionless updates and upgrades.

Most importantly, the time your teams save not doing manual coding, patching, or
configuration is spent on customer thinking and innovation. And from your
customers’ perspective, little do they know how much work it took to scale up the
DevOps program that made it possible to streamline everything from app
development to management of your fleet of smart devices in the field. They just
know that every interaction with your company is consistently great.

Getting here is a journey, not a destination. Every organization is at different stages
along the DevOps for devices maturity curve, and as you grow along the maturity
model stages, your business value and your ability to deliver exceptional customer
experiences increase.

47

7 - Managing Devices at Scale

The DevOps for Devices Action Plan

DevOps for Devices First Steps

Successfully managing your devices with DevOps requires an enterprise-wide
investment in automation, autonomy, trust, and collaboration. Early on, this can
mean large-scale changes for organizations new to DevOps. Here are the key things
to know about getting started.

Eliminate points of friction

You can’t fix something if you don’t know what the problem is. DevOps asks us to
continually work to identify points of friction throughout our teams, process, and
tools. When you expand DevOps to your devices, encompassing new tools and
processes will inevitably reveal new points of friction. Plan for that by deliberately
adding new elements to your systems and jettison approaches that don’t work well.

Break down team silos

Most organizations say that communication between teams is the biggest
challenge in integrating DevOps tools and methodologies. Competing priorities and
resources, another artifact of siloed teams, is another big one.
When you’re practicing DevOps for devices, you’ll need open collaboration between
not just your developer and operations teams but your hardware teams as well.
Getting them to work seamlessly together can be challenging. Start with improving
communication between teams, creating shared goals, and celebrating each
other’s accomplishments. These lay the essential groundwork for them to work
smoothly together— sharing creates trust, and with trust comes better, more
effective collaboration.

48

There Are No Minimum Requirements for
Device DevOps

You don’t need to wait to reach a particular point of maturity before expanding
DevOps to encompass your device fleet management. Instead, let your current
state inform your expectations about the impact DevOps for devices will have
today, tomorrow, and over the long term.

Continuous improvement is a core principle in DevOps—let that guide your
progress and expectations. You don’t need to achieve Tesla-level
autonomous updates overnight — but nor should you think that’s out of
your reach.

Prioritize efficiency

Speed matters in DevOps. It matters even more when you’re applying DevOps to
your mission-critical, revenue-generating devices. Whether it’s trying to reboot a
failed device or push out an update to better the user’s experience, you need to
move quickly and effectively.

Moving efficiently requires automation. It may seem obvious, but we can often
overlook inefficiencies if we’re used to them. Find anywhere in your processes you
can automate tasks, consolidate tools, streamline approvals, or give employees
more autonomy. There is no automation too small. Daily progress has a way of
adding up and, perhaps more importantly, can help you reduce the impact of
mistakes.

49

50

The Benefits at the End of the DevOps Rainbow

DevOps for Devices First Steps

Running your dedicated device operations the DevOps way is immediately
impactful, creating sweeping change across your organization and for your
customers. The benefits are many — here are a few standouts:

Faster time to market
Once you’ve applied DevOps principles to your team, processes, and devices, you’ll
create a more agile company. One that has the processes, visibility, and control to
deliver faster and react at high speed. You can move at the speed of your
customers’ expectations, turning ideas into market ready products in record time.

Better customer and fleet manager experiences
DevOps on devices infinitely improves how you can best serve your customers and
employees. With these practices, you’ll be able to continuously deliver
personalized, immersive experiences to customers on the devices they rely on to
work, play, and connect. Fleet managers, on the other hand, can use automated
processes to manage menial device management tasks, minimize headache
inducing fire drills, and feel confident in the performance of their fleet.

Long term foundation for success
While DevOps for devices may be a big change for some, it’s one that will bring you
benefits for the long term. These practices create a foundation for you to
continuously manage your mission-critical devices effectively. One that’s agile, not
set in stone. With them, you can continue to manage your devices with efficiency
even as you scale and diversify your fleet, make changes based on the needs of
your business, and react to new customer expectations.

So many people came together in order to help me create this book. I am constantly filled with gratitude to work
with a team full of people who take ownership, work hard, and are kind.

First and foremost, for the support in writing this book, thank you to Jordan Con, Alexandra Deane, David Ruddock,
and Brian Walker. I am grateful to you all for transforming my musings into a concise and thoughtful manuscript.
You made this book a reality.

At the various stages of writing this book, I benefited from the guidance of many of the experts on my team. Thank
you to Cole Jaillet, Sudhir Reddy, and Chris Stirrat, who have each influenced this book in a meaningful way. Their
insights are woven into this book, and it would not be the same without them.

I’d also like to thank Emily Carrion, who read early versions of this book. This book has benefited greatly from your
feedback and advice. I am indebted to you for turning the first drafts of this book into an insightful read.

To Dinesha Kumar and Veeresh Antapur, thank you for the beautiful cover of this book. Your designs never cease
to amaze me.

Thank you to Kaleen Skersies for defying logic and making time in my schedule to dedicate to this book. I am, as
always, deeply grateful for your help.

I am extremely grateful to my wife Dharini, who has supported me throughout the process of starting and growing
Esper to where it is. Her encouragement and patience have allowed me to focus on my passion and bring our vision
to reality.

And finally, to anyone who has taken the time to read this book, thank you. Your time and attention are valuable,
and I appreciate you choosing to spend some of it with me.

Yadhu is Co-Founder & CEO at Esper, a leader in DevOps for Devices. He is the
visionary behind Esper’s mission to bring DevOps to smart Edge devices in the
enterprise and is responsible for Esper’s product innovation, marketing, customer
success, finance, and people teams. Under Yadhu’s leadership, Esper was named
on three of Built In Seattle’s “best of” lists: ranking 18 out of 100 on Seattle Best
Places To Work, three out of 100 on Seattle Best Midsize Companies To Work, and
17 out of 50 on Seattle Best Paying Companies. Esper was also honored as a G2
2022 Best Software Award Winner in the Best IT Management Products category,
ranking #13 out of 50 and the top-ranked in the fleet and device management
space.

Yadhu has over 25 years of experience and 35 patents in embedded systems and
security. He has held engineering leadership roles at Microsoft as Chief Architect of
the Windows CE and Windows Phone. At Amazon, he designed back-end solutions
for FireOS and AWS before owning Systems Engineering for Amazon Go. Yadhu has
a BS in Electrical and Electronics Engineering from the University of Maine and an
MS in Electrical and Electronics Engineering from Auburn University. He lives in the
greater Seattle area.

Acknowledgements

About the Author

e s p e r . i o

No matter your industry or focus, if you have a dedicated device fleet, DevOps for Devices delivers a proven way to

architect and deliver the next generation of continuously improving customer experiences.

If you’re struggling with how to use your device fleet as a competitive advantage, you’re not alone.

Revenue-generating devices are a new arena, becoming mission critical in today’s age of subscription revenue, and

traditional management tools lack the functionality to truly turn them into a competitive edge. In DevOps for

Devices, you’ll learn exactly how to bring your tools into the dedicated device age and use your devices to capture

previously unattainable opportunities.

Written by Yadhu Gopalan, the visionary behind Esper, the industry’s first and leading DevOps platform for Android

devices. Yadhu is known for his innovation with device infrastructure, having spent over two decades developing

software and leading engineering teams at Amazon and Microsoft. In DevOps for Devices, he draws on his

experiences to provide an easy-to-understand guide for how to apply DevOps to your dedicated device fleet.

DevOps for Devices will reshape your entire approach to managing devices. From deploying updates confidently to

implementing the right security practices to easily scaling your fleet, you’ll walk away with the answers to your

toughest fleet management challenges.

Summary

