
Get Started

Esper Guide

Considerations for
Building Android Apps
for Company-Owned
Devices

Creating apps for
the dedicated
device world

Start here
Your app delivers your customer (or employee) experience, making it a crucial piece of your overall solution. Use this guide to
understand the considerations of designing and building your perfect app for dedicated device use cases on Android
hardware.

Click to jump to a specific slide or use the navigation bar to continue on.

Build
considerations

Manage
considerations

More
resources

Design
considerations

Creating apps for the dedicated device world

Area Question

What makes designing an app in the dedicated
device world different?
The app is the center point of your user experience. You’re using this app
as a core part of your business strategy, whether it's how you monetize
with end customers or operationally-oriented.

This has implications across your business and brings up many factors to
consider, such as:

Strategy

Users

Operations

● What tech stack is associated with your desired
capabilities?

● How will you deploy, manage, or update your app?
● How will you track app health and performance?

● How does your app fit into your business model?
● How are you planning to monetize it?

● What experience are you trying to deliver?
● Who are your target users? Are they tech savvy?
● Can users intuitively use your app?

Dedicated device problem scenario
Scenario
You are rolling your app out to the field and it’s not working as
intended. The Android app install model preserves your app
cache when you roll forward, keeping all your login information
and app data. But when you rollback, you're essentially
uninstalling that current version and reverting to an old one,
meaning your app cache is flushed.

Esper solution
Keep related user and app cache data in the cloud, and have a
scheme for refreshing it back to your app when you do a
rollback. Using this solution to successfully resolve this
scenario requires upfront system design.

Tip! Some dedicated device scenarios aren’t supported by the
Android OS itself. With Esper Foundation you can seamlessly
tackle them. Learn more here.

https://www.esper.io/products/esper-foundation

Design

Design
Click on a category to jump to the slide or use the navigation bar to continue on.

Platform support
Operational

aspects

Telemetry UI

Deployment mode:
Kiosk

Deployment mode:
Multi-app

Tech stack
Distribution:

Google Play Store

Distribution:
Google Play Store apps

Distribution:
Private apps

Distribution:
Web apps

Managed
config

Hardware agnostic Hardware dependent

Platform support

Dedicated device problem scenario

Scenario
For your use case you’re looking to payload on iOS,
Windows, or Chrome in addition to Android).

Esper solution
Look into cross-platform technologies such as Xamarin,
MAUI, and Fuchsia. Note these offer only the least common
denominator feature set, so you can’t use any special
functionality of a particular OS.

Design

Focus on your use case. Consider what type of experience you
want to create for your end users and prototype it to ensure
functionality. OSs are generally tailored to specific use cases or
audiences. For example iOS is focused on prosumer use cases,
while Linux is primarily designed for IoT.

Consider cross-platform, but be cautious. Cross-platform
can increase your efficiency, but you are dependent on the
cross-platform framework (i.e. how they maintain it and what
they offer) instead of being able to work with the app
development capabilities offered for each OS.

Tips

Define what platforms you need to support your app once it’s
deployed.

Operational requirements

Dedicated device problem scenario

Scenario
Your app is running in kiosk mode, taking away the needed
ability for users to interact with the Android settings.
Without a scheme to make this functionality available to
them, you’re forcing technical engagement — possibly even
a truck roll — to address the issue, which isn’t economically
viable.

Esper solution
Esper settings offer a way for users to interact with curated
system settings, such as Wi-Fi access point, in a pinch. With
the settings included, your users can access them with
minimal involvement from your end.

You can add Esper settings to your config or later on when
you provision your device.

Determine how the app will operate when deployed to ensure
capabilities are easily and appropriately accessible to users.

Design

Consider these questions as you design your app.

How do you plan to deploy, manage, or update your app?

What common user scenarios are you going to run into?

Do your deployment and distribution modes support a
seamless user experience in these scenarios?

What capabilities, both in your app and outside of your app,
will users have access to?

How are you planning to track app health and performance?

Tips

Telemetry

Dedicated device problem scenario

Scenario
You want to proactively resolve issues with quick and quiet
updates before customers know something’s wrong.

This requires harnessing the power of device data to take
quick action. Your APK leverages telemetry to gain insight
into product usage in the app experience, but the Android
system itself is a data black hole.

Esper solution
Esper provides a base set of telemetry spanning system
resources, and wireless and network connectivity you can
monitor.

With Esper Foundation, you can go to exactly what you want
to monitor. If there are system events that are useful to track
and populate into your data lake, you can pipe in and stream
them from Foundation. And if a telemetry set is missing, we
can work with you to add it into our platform.

Define the telemetry set you need to identify issues before they become
problems and continuously improve the user experience.

Design

First, determine what telemetry data you’re looking for.
What do you want to see? Things like app crashes, how the
user interacts with the device, etc.

Then, find the tech stack that will deliver what you want.
For example, Firebase is a free, economical option, if it serves
your needs and you like how it delivers data, but it requires
running on GMS. Crashlytics, on the other hand, is also
available for AOSP. You can also pipe this telemetry and build
it into your app itself with third-party services.

Your distribution method could impact what you’re allowed
to see. For instance, if you’re deploying a web app, you'll have
less of an ability to capture telemetry as things like intent are
cut off when using Chrome.

Tips

UI

Dedicated device problem scenario

Scenario
You want to customize your app navigation bar.

Esper solution
With Esper Foundation we give you the ability to
dynamically control your UI and create new UX experiences
more easily. For example, with our Device SDK, your app can
decide when to expose the navigation bar and what
elements to make available to the user.

Design the best UI for your app to deliver the perfect experience for
your end users.

Design

Don’t underestimate designing your UI. Determining UI can be
unexpectedly complex. Something as simple as deciding
whether to include a navigation bar can surface many
questions. If you include one, you’ll need to decide things like
where it’s located, how your app will sit on it, or if you’re doing
swipe gestures with it. If you don’t include it, what are your
navigation elements?

AOSP often allows for UI modifications, like the presence of
a nav bar. Some OEMs provide SDKs that enable you to
determine that behavior.

Tips

Deployment mode: Kiosk

Dedicated device problem scenario

Scenario
Users are exploiting the device by accessing non-essential
apps and/or downloading additional apps.

Esper solution
Through Esper and our launcher you can lock your device
into kiosk mode, restricting usage to only approved apps and
prevent access to the Google Play Store. You can lock your
device to only one app on your homepage or have the app fill
the screen.

Learn more about kiosk mode with Esper.

Find the best way to deliver your use case to end-users while getting
to market quickly.

Design

Lockdown your device. Kiosk mode is used when you need to
lock down a device to a single app to prevent other uses. This
isn’t appropriate for use cases that need to have a home screen
with different app choices.

Android hardware agnostic. Kiosk mode can be used with
either GMS or AOSP hardware.

Tips

Primarily used for consumer-facing scenarios, whether a
customer-facing kiosk or employee-facing with the cash
register.

https://www.esper.io/device/kiosk-device-management

Deployment mode: Multi-app

Dedicated device problem scenario

Scenario
You want to provide users access to a specific set of apps
selected by an admin.

Esper solution
Through Esper you can set which apps are available for user
access. Only the shortcuts we expose and lock-in on the
home screen with the launcher are made available to the end
user.

You also get fine grain control of the APKs that ship in the
image built for the device. Apps in ROM will be running in
the background and you can choose to disable them.

Find the best way to deliver your use case to end-users while getting
to market quickly.

Design

Allows approved apps only. Multi-app mode is when you lock
your devices to only the apps approved by the admin. Users
access all apps through a home screen.

Android hardware agnostic. Kiosk mode can be used with
either GMS or AOSP hardware.

Tips

Primarily used for employee-facing use cases as you can
enable utilities or additional abilities such as analyzing the
Wi-Fi network at your deployment location.

Tech stack

Dedicated device problem scenario

Scenario
You want to use an app available on the Google Play Store,
but it’s not compatible with your AOSP-based device.

Esper solution
Esper can work with ISVs to discuss your GMS app
dependencies and the trade-offs of making an AOSP version
with your end-customer experience in mind.

If you need to build a custom app, Esper provides
easy-to-use tools, like our Android Studio and CI/CD
pipelines, so you can create and roll out apps seamlessly.

Learn more about this in the Build section of this guide.

Determine what tech stack you need as part of your implementation.

Design

GMS
Offers a set of developer tech you can utilize, including apps,
Play Store, Firebase, and developer services.

These are great tools to use, if you don’t mind having less
control over your app.

AOSP
You’ll get more design control on AOSP, but it only has a
subset of capabilities available on GMS.

Many apps built by ISVs have dependencies on the GMS dev
tech stack so they won’t run on AOSP. This includes enterprise
apps, Google Play Store apps, and apps available from an ISV
for private use. You’ll have to work with the ISV to remove the
dependencies and create a build for AOSP.

Distribution: Google Play Store

Dedicated device problem scenario

Scenario
You want to use app bundles for your dedicated use case.

App bundles allow you to do a small payload when the app
installs and have it progressively download, enabling end
users to have a great out of box experience instead of
waiting for a full download.

Esper solution
Don’t optimize for Google Play or app bundles if you're doing
dedicated use cases.

Esper follows the previous Google Play Store conventions
and is designed to work with release key signing. If you sign
with your release key and refrain from app bundles, you’ll be
able to work with the Esper Cloud and other dedicated
device app distribution methods.

Learn how to best use the Google Play Store in the dedicate device
space.

Design

The consumer use case is the Play Store’s main focus. The
vast majority of app development is centered around
consumers wanting to payload via Google Play. Google is
working to improve this process for app devs with things like
taking ownership of the signing key for your app or doing app
bundles (primarily for games).

The Play Store can only be used with GMS hardware. Apps
on the Google Play Store are created by GMS App Devs and
ISVs. They are often only compatible with a GMS device.
AOSP devices don’t have access to the Google Play Store.

Tips

Distribution: Play Store apps

Dedicated device problem scenario

Scenario
You want to give device users access to apps on the Google
Play Store.

Esper solution
Esper offers access to the Managed Google Play Store, a
special aspect of the Google Play Store meant for managed
devices. With this you can control which apps from Google
Play Store are available to your device fleet for download.

Leverage the wide range of existing apps available on the Google Play
Store for GMS devices.

Design

GMS
Have the option to pool existing APKs on the Google Play
Store. This is a great option if the apps can serve your business
purpose.

Don’t typically see Google Play Store apps used in kiosk mode,
but they can be a good option for multi-app mode.

AOSP
For AOSP, Esper takes care of the app distribution
infrastructure as the Google Play Store doesn’t exist for AOSP.

Distribution: Private apps
Private apps can give you more control over you app development and
management. They are fully compatible with Managed Google Play. Dedicated device problem scenario

Scenario
You want to deploy a private enterprise app to your users’
devices.

Esper solution
Managed Google Play Store gives you a private, secure app
store for your organization. You can use it to deploy and
update proprietary apps without user intervention. However,
it isn’t designed for dedicated devices. Dedicated fleets face
edge conditions consumer devices don’t and have a mix of
device types like, POS, kiosks, or digital signage, that need
nuanced support.

Esper offers you your own app deployment solution with
tons of customization and powerful, code-driven
extensibility. You can deploy directly to any of your devices
whether in the lab or field.

Learn more about this in the Build section of this guide.

Design

GMS
Can use Managed Google Play to distribute your app in a
private manner relative to your Esper endpoint or cloud
instance.

AOSP
There's no native app cloud built into AOSP. You have the
control to build and distribute your app through the Esper
Cloud.

Distribution: Web apps
Web apps are a great way to deliver the experience you've already
invested in and curated on your website through an app. They’re quick
to build, prototype, and deploy. Dedicated device problem scenario

Scenario
You want to deliver an experience via a web app that is
dependent on Chrome.

Esper solution
Esper can build web apps for our customers using Chromium
that are independent of Chrome and can run on either AOSP
or GMS.

Design

GMS
Can create web apps through Managed Google Play.

Web apps require Chrome to be shown on the home screen for
the app to work. This isn’t a problem in kiosk mode as the
Chrome shortcut is hidden behind the kiosk mode app.
However, in multi-app mode, Chrome will be available for use.
You’ll need to consider how to apply a managed config to
control what users can do with it.

AOSP
Web apps built through Managed Google Play will only work
on GMS devices. Through Esper, you have the ability to do rapid
prototyping with web apps on AOSP that doesn't exist with
GMS.

Managed config
Managed config is a way to provide a data payload that will configure
your app based on that payload. Example: Limiting app behavior such
as what websites the Chrome app can go to. Dedicated device problem scenario

Scenario
You want to build an app that works across GMS and AOSP.

Esper solution
Since you can't use the GMS dev tech stack in this scenario,
Esper created the ability to support managed config across
GMS and AOSP.

You get the tools to programmatically control your config and
push out data payloads in a fine grained manner to apps
running on your devices. With Esper you can group your
devices and create a specific managed config for a certain set
of devices, customers, etc.

Design

GMS
With GMS, you're stuck with an atomic configuration. Any
install for the app is going to utilize that managed config across
your entire fleet. This isn’t great for dedicated device scenarios
as different customers often need different configurations.

AOSP
Managed config was conceived to be specific to GMS and
Managed Google Play. Through Esper’s genericized version you
can access it for AOSP. For this, you will need to build your app
to support manage config. This isn’t hard to do, but it is an
additional aspect to consider as you design your app.

Build

Build

Esper Plugin
for Android Studio

Emulators Device SDK
Android apps on x86

hardware

Click on a category to jump to the slide or use the navigation bar to continue on.

Esper Plugin for Android Studio
The Esper Plugin for Android Studio is an external third-party model
that enables you to add capabilities to Android Studio.

Build

Benefits

Streamline the development flow from build to test lab to
deployment with a code-driven approach

Easily install apps on your device fleet

Capabilities

Upload APKs directly from Android Studio to an Esper
Endpoint. Once uploaded you can use the Esper APIs, SDK,
or CLI from Android Studio Terminal to provision devices
with the APK for testing or deployment purposes.

Trigger pipelines for automated test lab and canary
deployment

Emulators

Capabilities

Almost all Android Studio emulators are centered on GMS.
To help, Esper built emulators for AOSP and Esper
Foundation. With them, you can:

● Deploy applications to emulators from the cloud
emulating application deployment on virtual devices.

● Track device performance and behavior easily using
unique device IDs for every virtual device.

● Emulate peripherals such as printers, card readers,
and barcode scanners.

For larger customers, Esper helps create custom emulators
for their specific hardware to enable large application
development teams and specialized ISVs that want to target
their bespoke hardware.

Esper’s Android Virtual Device is an emulator, which helps developers
test their apps by defining characteristics of a device to simulate real
device capabilities.

Build

Benefits

Reduce device shipping cost by testing hardware virtually

Grow your ISV developer base by providing custom device
emulators to kickstart app development instantaneously

Test app-device compatibility right from the development
phase using a custom emulator

Device SDK

Capabilities

Access information most APKs can’t, such as device serial
number. Use the Device SDK on Esper-provisioned devices to
fetch the device serial number, enabling 1:1 coordination
between your Cloud and your APK on every device in your
fleet. These capabilities are available on any AOSP or GMS
device, and of course are built into Esper Foundation.

Fine-tune with Esper Foundation, such as fully customizing
the behavior of the Android navigation bar, the permissions
model, and system notifications. You aren’t stuck with what
your device maker has decided to do, or the decisions made
by the vendor of the BSP they’ve chosen.

Esper provides a Python client library to communicate with the Esper
APIs to programmatically control and monitor your Android dedicated
devices.

Build

Benefits

Easily perform privileged operations on managed devices

Develop apps which need to perform seamless operations on
or retrieve vital information from a device

Turbocharge your application and enhance the types of
experiences you can create

ARM

Android Apps on x86 hardware

Running your Android app on x86-based devices? Here’s how to make sure your app is compatible.

ABI requirements

When you build an Android app, you
create an application binary interface
(ABI) which is specific to the underlying
silicon.

To run an app on x86 it will also need an
x86 ABI. Both ABIs are built by default if
you’re using the Android Studio.

Using third-party apps

Some APKs from third-parties won’t work
on x86 as they weren’t built with the x86
ABI.

The simple solution is to have the app
dev modify the build to include the x86
ABI. You can use an emulator, but these
are slower and modifying the build is very
easy to do. This won’t be a big deal for
dedicated use cases, as you're most likely
not using Play Store apps and technically
GMS isn’t available on x86-based
Android.

Building custom apps

If you’re building your own app, make
sure your developer understands you’re
running the app on x86 (AOSP)
hardware.

You can also give them test hardware that
includes an emulator running AOSP or
Esper Foundation in the Android Studio
with the precise target.

Build

Manage

Manage

Bug reports Secure ADB

Click on a category to jump to the slide or use the navigation bar to continue on.

Bug reports
Seamlessly service and interact with the devices in the field that are
running your app. Dedicated device problem scenario

Scenario
Obtaining your Logcat when in kiosk mode

Esper solution
You can capture your Logcat on a GMS or AOSP device, but
sending it requires specific user permissions.

This can be tricky if you’re using kiosk mode as it’s common
in this mode to disable the notification bar. This means you
won’t be able to respond to the notification. Through Esper
you can remotely (or locally if you’ve set it up this way) take
the app out of kiosk mode to respond to the notification and
send the bug report.

Manage

Debug your fleet in real time. Esper facilitates getting your
Logcat for you through our infrastructure and with Esper
Foundation on AOSP, it’s seamless. You simply send a request
for a bug report to Esper. It’s then generated and made
available for download through the Esper console.

Benefits

Reduce OpEx. Dedicated devices are often in hard to reach
places and end-users aren’t always tech savvy. Reliable access
to bug reports can save you from costly and unnecessary truck
rolls.

Secure ADB
Resolve customer or field device issues remotely with Android Debug
Bridge (ADB) Dedicated device problem scenario

Scenario
Running remote ADB in the field securely

Esper solution
Esper’s Secure Remote ADB is the same tool as Google’s
Android ADB, but instead of requiring a physical or local
network connection, it can be used from anywhere in the
world through an encrypted tunnel to the remote device.

Our ADB is designed to limit the security risks associated
with exposing ADB. If you enable ADB for a USB port on
your device, you can locally jack in and run a session. This
works great for the local tech, but can leave your device
exposed in the wild. Esper enables you to control your ADB
session, turning it off or setting a session duration in case
you forget to.

Manage

Devices may need setup before running ADB sessions. Setup
typically doesn’t survive reboot so you can’t configure it at the
factory and have it survive in the field. You could prepare a
subset of devices when they’re being shipped so they’re readily
available for ADB sessions or have a field tech set the device
for the ADB session.

If you have to do a truck roll, you can set up Secure Remote
ADB so a developer can debug the device remotely. With Esper
Foundation, we offer seamless Secure Remote ADB which
enables you fire up an ADB session whenever you want.

Tips

Need more help?

Learn more about Esper

Esper can help you automate your Android app development and
device management for the cloud age. Our full-stack cloud
developer tools help you build, deploy, and debug cloud-connected
apps running on Android devices.

Learn more about how we can help you unlock a smarter approach
to Android app development, visit our website or connect with an
in-house expert.

https://www.esper.io/
https://www.esper.io/company/contact-us
https://www.esper.io/company/contact-us

